Leakage detection and location in gas pipelines through an LPV identification approach

نویسندگان

  • P. Lopes dos Santos
  • T-P Azevedo-Perdicoúlis
  • G. Jank
  • J. A. Ramos
  • J. L. Martins de Carvalho
چکیده

A new approach to gas leakage detection in high pressure distribution networks is proposed, where two leakage detectors are modelled as a Linear Parameter Varying (LPV) system whose scheduling signals are, respectively, intake and offtake pressures. Running the two detectors simultaneously allows for leakage location. First, the pipeline is identified from operational data, supplied by REN-Gasodutos and using an LPV systems identification algorithm proposed in [Lopes dos Santos et al., 2008b]. Each leakage detector uses two Kalman filters where the fault is viewed as an augmented state. The first filter estimates the flow using a calculated scheduling signal, assuming that there is no leakage. Therefore it works as a reference. The second one uses a measured scheduling signal and the augmented state is compared with the reference value. Whenever there is a significant difference, a leakage is detected. The effectiveness of this method is illustrated with an example where a mixture of real and simulated data is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research on Leakage Detection and Analysis of Leakage Point in the Gas Pipeline System

Recently, with large-scale use of natural gas and massive constructions of gas pipelines, more and more public concern is focused on pipeline leakage. The leakage caused by holes on gas pipelines generates economic losses to gas companies and causes risks to the environment and sometimes accidents. In order to detect and locate pipeline rupture immediately, the leakage detection method plays a ...

متن کامل

An LPV Approach to Sensor Fault Diagnosis of Robotic Arm

One of the major challenges in robotic arms is to diagnosis sensor fault. To address this challenge, this paper presents an LPV approach. Initially, the dynamics of a two-link manipulator is modelled with a polytopic linear parameter varying structure and then by using a descriptor system approach and a robust design of a suitable unknown input observer by means of pole placement method along w...

متن کامل

INVERSE FREQUENCY RESPONSE ANALYSIS FOR PIPELINES LEAK DETECTION USING THE PARTICLE SWARM OPTIMIZATION

Inverse Transient Analysis (ITA) is a powerful approach for leak detection of pipelines. When the pipe transient flow is analyzed in frequency domain the ITA is called Inverse Frequency Response Analysis (IFRA). To implement an IFRA for leak detection, a transient state is initiated in the pipe by fast closure of the downstream end valve. Then, the pressure time history at the valve location is...

متن کامل

Qualitative Risk Assessment of Gas Pipelines by Using of Indexing System Method in GIS environment

Nowadays the urbanization is developing rapidly, and it leads to growing demand for gas; which resulted in denser pipeline network, by the following increase in the pipeline network congestion, accidents  will become inevitable. So Pipelines are a remarkable source of hazard for their adjacent society. Usually Indexing system method is used for pipe line risk assessment. This method assesses ri...

متن کامل

Linear Parameter Varying System Identification: State-Space Approaches

Presently, linear parameter varying (LPV) systems are broadly used in a wide range of applications such as in aerospace, energy, health, mechatronics, process control, computational systems, etc. Essentially, an LPV system is a linear system whose parameters are functions of a scheduling signal. It can be described by state-space or input/output models, in continuous or discrete-time. The incre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010